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Abstract

We present DPD simulations of linear polyethylene melts with force fields derived from microscopic simulations using the concept of po-
tential of mean force. We aim at simulating realistic short polymers from a qualitative and quantitative point of view. An interesting issue is then
to know the influence of the adjustable parameters of the DPD: g, the friction coefficient, and rC, the cut-off radius, on the global and local
dynamics of the polymer, i.e., the diffusion coefficient, DCM, the end-to-end decorrelation time, tR and the Rouse times. By varying these
two parameters, we investigate structural and dynamical properties for different polymeric systems at a given chain length. Although scaling
laws typical of the Rouse model have been reproduced using this DPD method, we observe deviation from the Rouse theory for the local
dynamics of certain systems. The dynamical properties of the polymer melt are defined simultaneously by g and rC. Therefore we combine these
two parameters, introducing a new parameter, the effective friction coefficient, geff.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer dynamics involve a large length scale and a wide
range of time scales that atomic simulations cannot commonly
attain. In the last decade, several coarse-grained descriptions
have been developed to overcome this difficulty. The coarse-
graining approach consists in integrating out the fast fluctuat-
ing variables of a certain number of microscopic units grouped
in mesoscopic entity, called bead. By reducing the number of
particles taken into account and the computational time, these
methods permit to simulate much longer time scales and to
have access to diffusion coefficient, end-to-end vector decorre-
lation time, and viscoelastic properties. The coarse-graining
level can be few atoms [1e3], monomers [4e7] or a whole
chain [8e10]. The way to obtain effective interactions differs
in each case, going from iterative optimization procedures as
the Coarse-Graining OPTimization method by Reith et al.
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[11] to more straightforward methods [7]. Depending on the
coarse-graining level, different methods can be used to sample
the phase space of the system. We use here dissipative particle
dynamics (DPD) [12].

The DPD technique is based on the simulation of soft
spheres whose motion is governed by conservative, dissipa-
tive, and random forces. In this work, we use a conservative
force built using a potential of mean force approach. The con-
servative force field is determined from microscopic simula-
tions [13]. This force field is used to reproduce a realistic
polymer melt as far as structural properties are concerned.
The dissipative and random forces act as a thermostat. They
introduce adjustable parameters that have an impact on the
dynamical properties of the polymer melt: the DPD friction
coefficient, g, and the cut-off radius, rC.

Espa~nol and Serrano [14] discussed theoretically the behav-
iour of the dynamical properties of a DPD fluid. Groot and
Warren [15] drew a direct link between the DPD friction and
the diffusion coefficient in such a fluid. These systems are sim-
ple fluids where no conservative force is taken into account.
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The situation is different in the present work, and we try to un-
derstand the relationship between the adjustable parameters of
the dynamics, the resulting friction in the melt and the dynam-
ical properties. Soddemann et al. [16] showed that using DPD
as a thermostat in a MD simulation does not change the vis-
cosity of the liquid, provided the DPD friction coefficient is
not too high, that is, remains small compared to the intrinsic
friction of the particles. In mesoscopic simulations where the
potentials are soft, the intrinsic friction is low and the situation
is totally different. We expect that the combination of the ran-
dom and dissipative forces will lead the dynamics.

In this study we keep the coarse-graining level and the
polymer length constant. We focus on the adjustable parame-
ters of the dynamics that will affect the dynamical properties
of the polymer melt. We study their influence on the diffusion
coefficient and the end-to-end vector decorrelation time of the
polymer. Furthermore, in order to have access to the local dy-
namics of the polymer chains, we compute the Rouse modes
for different systems. We check that the local dynamics are in
agreement with Rouse predictions and studied the influence of
g and rC on the Rouse times. For certain systems we see a clear
deviation from the Rouse theory.

In a recent paper, Kindt and Briels [17] studied scaling
properties on dynamical properties of polymer melts. We want
to know whether this method is applicable to our system. This
kind of method could enable us to simulate a system at a given
friction coefficient and to scale the obtained properties in order
to have realistic values. This could permit us to have shorter
computational time. We then try to apply a scaling method to
the global and local dynamical properties.

This paper is organized as follows: in the first part, we pres-
ent the principles of the DPD method. In a second part, we
expose the main characteristics of the Rouse model and the
concept of scaling on friction coefficient. In a third part, we
present our results for the global and local dynamical proper-
ties and for the scaling method. Finally we introduce an effec-
tive friction coefficient geff to combine the influence of g

and rC into a single parameter, and we study the influence of
this new parameter on the local and global dynamics of the
melt.

2. The DPD simulation method

The DPD technique was first introduced by Hoogerbrugge
and Koelman [12]. DPD is essentially a molecular dynamics
simulation where the beads interact through direct conserva-
tive, dissipative and random forces. The equations of motion
for a given bead have the following form:

d r!i

dt
¼ p!i

mi

ð1Þ

d p!i

dt
¼
X
isj

F
!C

ij þ F
!D

ij þ F
!R

ij ð2Þ

where F
!C

ij is the conservative force exerted on the ith bead
by the jth bead, F

!D
ij is a dissipative force and F

!R
ij is a
random force. An expression of the dissipative and random
forces is:
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where e!ij ¼ ð r!i � r!jÞ=k r!i � r!jk and v!ij ¼ v!i � v!j with
r!i and v!i being the position and velocity vectors of the bead i.

dWij is a Gaussian white-noise term with dWij¼ dWji and with
the following properties:

�
dWijðtÞ

�
¼ 0; ð5Þ

�
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�
¼
�
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�
dðt� t0Þ ð6Þ

Espa~nol and Warren [18] showed that the following fluctua-
tionedissipation relation must be satisfied:

½uRðrÞ�2s2 ¼ 2uDðrÞgkBT ð7Þ

In practice, the following set of equations is retained:

uRðrÞ2¼ uDðrÞ ¼ uðrÞ
s2 ¼ 2gkBT

�
ð8Þ

The weight function u(r) provides the range of interaction for
dissipative and random forces. In this work, this simple choice
is made:

uðrÞ ¼ ð1� r=rCÞ2 for r < rC

0 else

�
ð9Þ

We will investigate the influence of the friction coefficient,
g, on the dynamical properties of the polymer. When studying
dynamical regimes in the dissipative particle dynamics model,
some authors like Espa~nol and Serrano [14] used normalized
weight function and dimensionless parameters. In our case,
the weight function is not normalized, therefore we expect
that rC will have an influence on the dynamical properties of
our system. We want here to make clear that, when changing
the value of the cut-off radius, we do not change the value
of the density, that is, our simulations are not performed at a
constant reduced density. When increasing rC we increase
the number of beads in interaction with each bead, but we
also modify the weight function of our simulation. The influ-
ence of g seems more simple but we should not forget that the
dissipative force depends not only on g but also on rC through
the weight function. Both the parameters then have an influ-
ence on the dynamical properties. We shall check that these
parameters have no influence on the structure of the polymer
melt.

For the conservative force, our approach consists in deriv-
ing conservative forces from a microscopic description. Meso-
scopic particles were built onto microscopic particles [13]. In
order to obtain force fields from microscopic interactions we
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use the concept of the potential of mean force. The expressions
of the conservative forces are as follows:

F
!C;nb

ij ¼�Viw
nb
�
rij

�
ð10Þ

F
!C;b

iiþ1 ¼�Viw
bðriiþ1Þ ð11Þ

with the potentials defined by:

wnb
�
rij

�
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gm;nb
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wbðriiþ1Þ ¼ �kBT ln
�
gm;bðriiþ1Þ

�
ð13Þ

F
!C;nb

ij is the non-bonded part of the conservative force
and F
!C;b

iiþ1 is the bonded part. In these equations, m refers to
the results of Monte Carlo microscopic (i.e., atomic) simula-
tions. gm,nb(rij) and gm,b(rij) are pair distribution functions of
the positions of coarse-grained particles mapped onto groups
of microscopic particles.

The non-bonded potential is plotted in Fig. 1 and the bonded
potential in Fig. 2. The potentials are fitted with Gaussian and
power functions as follows:
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For more details concerning the mapping method and the
parameters of the potentials, see Ref. [13].

3. Global and local Rouse dynamics

3.1. The Rouse Model

The Rouse model is considered as the standard model
for the dynamics of unentangled polymer melts. It treats
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Fig. 1. Conservative non-bonded potential. The dotted line represents the

fitting function.
the motion of a Gaussian chain consisting of N beads with
coordinates R

!
iðtÞ in a heat bath. For such a chain, equations

of motion can be described by the following Langevin
equations:
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where z is the segmental friction coefficient. The solution
of the Rouse equations of motion is determined by trans-
formation to its eigenmodes whose expressions are as
follows:
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X
!

k represents the local motion of the chain which includes
N/k segments. The self-correlation functions of these modes
are given as:
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with tk¼ zb2/[12kBT sin2(kp/2N )]. The Rouse model also
predicts:
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For times longer than tR:
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with tR¼ zb2N2/3p2kBT.
By integrating the equations of motion for the centre of

mass, we can find that: DCM¼ kBT/Nz.
The scaling laws typical of the Rouse model are the

following:

ReefN1=2 ð23Þ

DCMf1=N ð24Þ

TRfN2 ð25Þ

In this work, we do not consider entangled chains, so we
will use the Rouse model as a reference and compare our
results to those predicted by this model. We will compute
the Rouse modes applying to the positions of the beads, and
check whether these Rouse modes are the normal modes for
our systems. Our aim is to check whether or not the DPD
model behaves like the Rouse model at all relevant length
scales.

3.2. Scaling on friction coefficient

In this paper we investigate the influence of the friction co-
efficient on the dynamical properties. In their mesoscale sim-
ulations, Kindt and Briels [17] used the concept of scaling on
friction coefficient. We use here the same approach. If scaling
applies to the DPD friction coefficient, all time-dependent
properties must be similar modulo a scaling of the time
axes. Considering a time-dependent property of a system sim-
ulated at a reference friction coefficient g0, we should obtain:

Fg0
ðtÞ ¼ Fgð ftÞ ð26Þ

with f depending linearly on g.
Applying this scaling to the linear part of the mean-square

displacements of the chains and to the autocorrelation function
of the end-to-end vector we find that:

f ðgÞ ¼ DCMðg0Þ
DCMðgÞ

ð27Þ

f ðgÞ ¼ tRðgÞ
tRðg0Þ

ð28Þ

We can also apply this kind of scaling to the Rouse modes
relaxation. We define a function a(g) so that:

tk ¼
aðgÞ

sin2
�

kp
2N

� ð29Þ

We then obtain another relation defining the scaling function:

f ðgÞ ¼ tkðgÞ
tkðg0Þ

k ¼ 1;.;N� 1 ð30Þ
The Rouse theory predicts that DCM f 1/z and tR f z. So this
type of scaling applies directly to the Rouse friction coeffi-
cient, and we should find: f (z)¼ z/z0. Although the Rouse
friction coefficient z and the DPD friction coefficient g are
different parameters, we try to find a similar scaling for the
DPD friction coefficient and to find a relationship between
these two coefficients. This relationship may depend on the
cut-off radius of the considered system, rC. This scaling could
be very useful for our simulations. In order to simulate realis-
tic polymers we should set g at quite high value. This implies
that the integration time step in the Velocity Verlet algorithm
should be set at value lower than 10�5 ns. The concept of
scaling could enable us to use lower friction coefficient, larger
integration time step, and to observe all time-dependent prop-
erties on much shorter times.

4. Results

4.1. Systems and Simulation details

In this work we investigate polyethylene melts at a temper-
ature of 450 K and a density of 0.761 g/cm3. The number of
chains, Nc, and the number of beads per chain, Nb, are kept
constant (Nc¼ 100, Nb¼ 10). The level of coarse graining is
l¼ 10, i.e., each bead represents C20H40. Because of this
high coarse-graining level, the beads interact in a very soft
manner and can interpenetrate. Thus, our simulations will only
reproduce the Rouse regime and not show any presence of en-
tanglements [19]. The DPD simulations were performed in the
canonical ensemble (NVT) with minimum image convention.
The integrator chosen was a modified Velocity Verlet as pre-
sented by Groot and Warren [15]. We have simulated systems
with different cut-off radii, and, for each cut-off radius, dif-
ferent friction coefficients. The smallest value of rC was de-
fined such that wnb(rC)/wnb(0)¼ 5.5� 10�3. We used three
values for rC: 1.75, 2.25 and 2.75 nm. In comparison, the po-
sition of the first radial distribution function maximum is
about 1 nm. Increasing rC we increase the number of beads
that are in interaction and consequently the computational
time. We used seven different values of g: 90, 135, 180,
225, 270, 315, 360 kg mol�1 ns�1. Previous works on the
same systems at different chain lengths showed that scaling
laws typical of the Rouse model are reproduced using this
approach [13].

4.2. Influence of the cut-off radius and friction coefficient
on the global dynamics

For the different systems, we checked that the average of
the kinetic energy of the system was equal to the expected
one hEci ¼ (3N/2)kBT within a maximum error of 0.5%. For
the range studied, the cut-off radius and the friction coefficient
have no effect on the kinetic energy of the system, which is
logical since the dissipative and random forces are linked by
the relation of fluctuationedissipation and act as a thermostat.

The structure of the chains is described by the radial distri-
bution function, the chain end-to-end vector and the radius of
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gyration. The structure of the polymer is determined by the
conservative forces and shall not depend on the friction coef-
ficient. By changing the cut-off radius we change the range of
the conservative forces and so this parameter could affect the
structure of the polymer. Nevertheless, even for the smallest
cut-off radius, the ratio wnb(rC)/wnb(0) is very small. We
checked that the structural properties, the radial distribution
functions, and the radius of gyration (plotted in Fig. 3) are
not affected by the change of rC and g.

We now focus on the global dynamical properties of the
polymer melt: the diffusion coefficient of the centre of mass,
DCM, and the decorrelation time of the end-to-end vector, tR.

DCM is obtained from the slope of the long time behaviour
of the mean-square displacement of the centre of mass:

DCM ¼ lim
t/N

1

6t

�
½R!CMðtÞ � R

!
CMð0Þ�2

�
ð31Þ

Fig. 4 shows the evolution of DCM with the friction coeffi-
cient for the three values of cut-off radius. As expected, the
higher the friction coefficient is, the lower DCM is. For
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rC¼ 2.25 nm and rC¼ 2.75 nm, we find that DCM(g,rC) f
1/g. For rC¼ 1.75 nm, DCM shows a different evolution:
DCM(g,rC) f 1/g0.8. In Fig. 4 we also see the influence of rC

on DCM. The larger the rC is, the lower the DCM is. Although
we have not investigated a large range of rC we see that
DCM(g,rC) f 1/rC

3.2. This influence is easy to understand: the
greater the rC is the more numerous are the beads in interac-
tions with each bead and the greater is the dissipative force
on each bead. But, we should not forget that the weight func-
tion is also involved in the computation of the dissipative
force. The influence of rC is then not only volumic. We will
study this issue in the next section.

To obtain tR, we fit the autocorrelation function of the end-
to-end vector with the Rouse expression of the decorrelation
end-to-end vector given in Eq. (22). Fig. 5 shows the evolution
of tR with the friction coefficient for the three values of cut-off
radius. As expected, the higher the friction coefficient is the
higher the tR is. For the three values of rC, we find that
tR(g,rC) f g. We find the same kind of behaviour according
to rC as what was observed for the diffusion coefficient:
tR(g,rC) f rC

3.2. For the two largest rC values, our observations
show that the dependence of the dynamical properties on g is
consistent with Rouse scaling laws on the friction coefficient.
But it seems that the dependence on rC is more complicated.
We will now study the local dynamics of the polymer chains.

4.3. Local dynamics

The Rouse modes of the chains were studied for all sys-
tems. For realistic polymer chains, it is not expected that the
Rouse modes are the normal modes. Indeed the uncrossability
constraints and the non-bonded interactions modify the equa-
tions of motion and the dynamics of the polymer melt cannot
be completely represented by the equations of the first section.
In our work, we do not use uncrossability constraints but there
are non-bonded interactions. We then expect that the Rouse
modes may not relax exponentially. As in previous works
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Fig. 5. tR [ns] as a function of g for the three cut-off values.
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[20,21], we find that the Rouse mode autocorrelations can
better be described by a stretched exponential form:

CkðtÞ ¼ exp
h
�
�
t=t�k

�bk

i
ð32Þ

where the relaxation times t�k and the stretching parameters
bk depend on mode number k and on the DPD parameters.
Having obtained the stretching parameters which characterize
a deviation from the Rouse theory, we compute effective
relaxation times using the Euler function:

tk ¼
t�k
bk

G

	
1

bk



ð33Þ

In Fig. 6 we show the stretching parameters bk as a function
of the wavelength N/k for certain systems. Surprisingly certain
systems show bk greater than 1. For these systems we do not
have stretched but compressed exponentials. This is not
consistent with what is observed in lattice simulations of
polymer chains without any uncrossability constraints [20].
For rC¼ 1.75, we notice that the more we increase g the closer
bk come to the value 1. In fact we observed two types of
evolution of bk according to N/k.

The first type of evolution is visible in Fig. 6. bk is clearly
above 1.0 for the smallest wavelengths. Then bk decreases
with N/k. This is not consistent with the Rouse theory. This
shows that the choice of rC and g has an influence not only
on the values of the dynamical properties but also on the
dynamical mechanisms themselves. For other systems, the
evolution is more consistent with what is observed in lattice
simulations [20], in a qualitative way. We see a slight devia-
tion from what is expected from the Rouse model, most of
the stretching parameters are contained between 0.9 and 1.0.
This slight, but physical, deviation can be due to the non-
bonded interactions between the beads that are not taken
into account in the Rouse model. To our opinion, the unphys-
ical stretching parameters that we observe for certain systems
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Fig. 6. Stretching parameters for the Rouse mode autocorrelations as a function
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are due to a too low resulting friction. This is not due only to
rC since we observe stretching parameters above 1.0 for
(rC¼ 2.25 nm, g¼ 90) (see Fig. 6).

For the different systems, we check Rouse predictions on
tk. We find that the dependence on k has the following form:

tkðgÞ ¼
aðgÞ

sinx
�

kp
2N

� ð34Þ

with x varying between 1.9 and 2.0. In fact the a function en-
compasses a dependence on rC, we should write arC

ðgÞ. This
expression is similar to what is expected from the theoretical
Rouse model. In Fig. 7 we plot a(g) for the three cut-off ra-
dius. These functions are linear, which is consistent with the
theoretical expression of the Rouse times.

The study of the different systems suggests that there is
a linear relation between the DPD friction coefficient g and
z, the corresponding Rouse friction coefficient. But it remains
a dependence on rC in these relations. The observation of the
local dynamics shows that certain systems do not exhibit be-
haviour consistent with the Rouse model and that the choice
of rC and g, in this regards, is of great importance in the
DPD technique. We will now see whether a scaling method
is applicable to our systems.

4.4. Scaling

Taking g0¼ 225, we compute scaling functions as ex-
plained in the second section. If the scaling applies to all sys-
tems, all these functions, computed from the mean-square
displacement, the relaxation time or the Rouse times should
match. There should remain no dependence on rC.

Fig. 8 displays this scaling for DCM, tR and a(g).
We can run a linear regression on the scaled coefficients of

diffusion and relaxation times. In Fig. 8 we plot the regression
lines computed from DCM, tR and a(g) functions. The regres-
sion lines are relatively close to each other, except the regres-
sion line for the diffusion coefficient of the first system
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(rC¼ 1.75 nm). For the a(g) function, the line corresponding
to the smallest rC value differs from the others. Moreover,
for this system, the slope of the regression lines for the diffu-
sion coefficient, the Rouse times and the terminal time are dif-
ferent. This is not surprising given the clear deviation from the
Rouse theory that we have observed for the local dynamics.
For the two other systems, the results are much better. The re-
gression lines do not show large differences and their slopes
are close to 1/g0. This method of scaling is then applicable
to our technique for rC larger than 1.75 nm.

5. Definition of a mean friction coefficient

We are confronted with a difficulty when trying to analyze
our results as a whole. All the relations we can determine be-
tween g, z, DCM and tR are in fact dependent on rC. We want
to find a way of combining the dependence of rC and the de-
pendence of g by using only one parameter. We have seen that
the influence of rC on the dynamical properties of our systems
is partially due to a volumic phenomenon. Let us consider
a bead in the polymer melt. By varying the cut-off radius,
we change the mean number of beads that are in interaction
with the first bead. But meanwhile, we change the weight
function. In order to be able to quantify this effect we intro-
duce a kind of mean friction coefficient, the effective friction
coefficient defined as follows:

geff ¼
ZN

0

guðr; rCÞgðr; rCÞ4pr2dr ð35Þ

In this definition, g(r,rC) is the radial distribution function and
u(r,rC) is the weight function defined in the first section. We
have seen that the radial distribution function that we obtain,
when using quite large rC, remains identical for all cut-off
radius. We deduce a simpler form of geff:
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Fig. 8. Scaling function f (g) as a function of g for the three cut-off values.
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geff ¼ g

ZrC

0

	
1� r

rC


2

gðrÞ4pr2dr ð36Þ

The second member of this equation is computed numerically
thanks to the radial distribution function obtained from our
simulations at each rC.

It should be noticed here that, when no conservative forces
are used, g(r) is constant and equal to 1.0. The use of an effec-
tive friction coefficient as defined in Eq. (36) is then equivalent
to the normalization of the weight function as proposed by
Espa~nol and Serrano [14].

Table 1 summarizes the simple expression of geff for the
three cut-off radius.

This new parameter is very useful in our case because it en-
ables us to plot the whole of our data on single curve unlike in
the previous section. If we compute geff for several rC values
we find that geff f rC

3.2, which is consistent with what we have
observed in the previous section. It is evident from the defini-
tion of geff that the relationship between couples (g, rC) and
geff is not injective. Several values of (g, rC) can give the same
geff. An interesting issue is then to know whether couples (g,
rC) giving the same geff give the same dynamical properties.

We now plot DCM (Fig. 9), tR (Fig. 10) and a (Fig. 11) as
functions of geff. The first observation is that the data related
to the three cut-off radius are located close to master curves
that we have plotted on the corresponding figures. Neverthe-
less, the data corresponding to the lowest cut-off radius exhibit
a somewhat different behaviour: the decrease of the diffusion

Table 1

Mean friction coefficient

rC geff

1.75 2.02� g

2.25 4.52� g

2.75 8.45� g
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Fig. 9. Diffusion coefficient [nm2 ns�1] of the centre of mass as a function of

geff.
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coefficient is less rapid, the slopes are lower for the end-to-end
decorrelation time and for the a function. We can also notice
that the systems that show a deviation from the Rouse theory
of local dynamics are those with the lowest effective friction
coefficient. We should specify here that Langevin equations
are applicable to the motion of a Rouse chain only for times
greater than ti, defined as M/z. The Rouse theory shows that
ti¼MDCMN/RT. If we compute these times, we find that for
rC¼ 1.75 nm and g¼ 45, ti¼ 3 ps, which is of the order of
the shortest Rouse times. Thus, for the systems with the lowest
geff, equations of motion of the shortest Rouse modes cannot
be described by Langevin equations, and the deviation from
the Rouse theory for certain systems is not really surprising.
Nevertheless, we have no explanation for the unphysical local
relaxations we observe. This only shows that one has to be
very careful when choosing the parameters of the DPD if
one wants to reproduce a correct local behaviour. We chose
to run regressions on the data corresponding to rC¼ 2.25 nm
and rC¼ 2.75 nm. We find that DCM f 1/(geff)1.09 and

0
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Rc = 2.25 nm
Rc = 2.75 nm
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Fig. 10. End-to-end decorrelation times [ns] as a function of geff.
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Fig. 11. a as a function of geff.
tR f (geff)1.05. If we look carefully at the different curves,
we can notice that there still exists a small jump between
the data for rC¼ 2.25 nm and those for rC¼ 2.75 nm. So there
may remain a small dependence on rC that is not linked to the
volumetric effect that we have encompassed in geff. The effec-
tive friction coefficient, however, enables us to understand the
major part of the influence of rC on the dynamical properties
of the melt. It also enables us to simplify the link between
the Rouse friction coefficient and the DPD friction coefficient.
We know that the diffusion coefficient given by the Rouse
model is as follows: DCM¼ kBT/Nz. We find from our data
that DCM f 1/geff. This shows that there is a linear relation
between z and geff.

6. Conclusion

We have investigated the dynamical properties of PE melts
with DPD, varying simultaneously both adjustable parameters
of the dynamics. Structural properties are not affected by the
change of rC and g, provided we use large enough values of
rC and g. The influence of these parameters is quite similar
in a qualitative way. Increasing rC increases the mean value
of the dissipative force applied to the beads, which is compa-
rable to what happened by an increase of g. If we choose
adjustable parameters corresponding to a low Rouse friction
coefficient, we observe a clear deviation from the Rouse the-
ory for local dynamics. This kind of strange behaviour would
have an impact on the determination of viscoelastic properties
of the melt. For systems that are in agreement with Rouse the-
ory, from a local and global point of view, we have seen that
there exists a linear relation between the DPD friction coeffi-
cient and the corresponding Rouse friction coefficient. But we
shall not forget that these relations contain a dependence on
rC. For these systems, it is possible to apply a scaling method
on the friction coefficient. The influence of rC must be linked
to the mean number of beads in interaction with each bead and
to the weight function u(r,rC). Therefore we introduce a new
parameter, the effective friction coefficient that enables us to
encompass the dependence on rC and on g into a single vari-
able. This parameter permits to understand the major part of
the influence of rC on the dynamical properties and to build
curves that can help us to determine the friction coefficient
and the cut-off radius we should use in order to simulate poly-
mers with given dynamical properties. The next step of this
study could be the determination of the scaling of g and rC

according to the coarse-graining level: when simulating a
polymer melt at different coarse-graining levels, l: how to
choose g and rC in order to obtain the same dynamical prop-
erties at all l? We expect that for coarse-graining level higher
than l¼ 10, we will keep a linear relation between the DPD
friction coefficient and the corresponding Rouse friction coef-
ficient. For an intermediate coarse-graining level, we expect
that the intrinsic friction will play a major role in the dynamics
and that the relationship between the DPD friction coefficient
and the resulting friction in the polymer melt will not be linear
anymore.
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